cooperation projects

Collux ZIM project funding

By the end of 2020 we will have tog­e­ther with the Chair for tech­ni­cal che­mis­try at the Uni­ver­si­ty of Duisburg-Essen and the Com­pa­ny CryLas GmbH from Ber­lin car­ri­ed out a col­la­bo­ra­ti­ve project.

This pro­ject was Cen­tral Inno­va­ti­on Pro­gram for SMEs (ZIM) pro­mo­ted. The ZIM is a nati­on­wi­de fun­ding pro­gram that is open to all tech­no­lo­gies and sec­tors, with the aim of sus­tain­ab­ly streng­thening the inno­va­ti­ve power and thus the com­pe­ti­ti­ve­ness of medium-sized com­pa­nies. The tech­no­lo­gi­cal inno­va­ti­on con­tent and good mar­ket oppor­tu­ni­ties of the fun­ded R&D pro­jects are essen­ti­al for appr­oval (

The aim of the three-year coope­ra­ti­on pro­ject was to deve­lop a com­pact and eco­no­mic­al­ly attrac­ti­ve machi­ne for the pro­duc­tion of metal nano­par­tic­le colloids. 
Kol­lo­ida­le Nano­par­ti­kel sind win­zi­ge Teil­chen, die sehr fein ver­teilt in Was­ser oder ande­ren Lösungs­mit­teln vor­lie­gen. Aus der Ober­flä­che eines Fest­kör­pers wer­den, mit Hil­fe eines Laser­strahls, kleins­te Tei­le ver­dampft und in einem flüs­si­gen Medi­um gebun­den. Sie sind nor­ma­ler­wei­se sehr teu­er: So kos­ten Gold-Nanopartikel etwa 300-mal mehr als das rei­ne Edel­me­tall in glei­cher Men­ge am Stück. Es gibt nahe zu kei­ne Berei­che der Indus­trie und For­schung, in dem Nano­tech­no­lo­gie nicht ver­wen­det wird. Die Ein­satz­ge­bie­te rei­chen von der Che­mie und Werk­stoff­tech­nik über die Bio­tech­no­lo­gie, Phar­ma­zie und Medi­zin­tech­nik bis hin zur Ener­gie­ge­win­nung, Ener­gie­spei­che­rung und zum Umwelt­schutz. Eine Aus­grün­dung des Pro­jekt­er­geb­nis­ses wur­de von Beginn an ange­strebt. So konn­te der Wis­sens­trans­fer aus dem uni­ver­si­tä­ren Umfeld hin­ein in die Indus­trie sicher­ge­stellt wer­den. Durch die, letzt­end­lich zum Patent ange­mel­de­te, Ent­wick­lung und die erfolg­rei­che Zusam­men­ar­beit rück­te das Vor­ha­ben immer mehr in greif­ba­re Nähe. Ziel ist die Aus­grün­dung Anfang 2022 (

Division of work areas

The com­pa­ny CryLaS GmbH was invol­ved in the sel­ec­tion of a sui­ta­ble laser sys­tem and the deve­lo­p­ment of the elec­tri­cal sys­tem, while the Uni­ver­si­ty of Duisburg-Essen was ent­rus­ted with the pro­cess engi­nee­ring basics and the over­all inte­gra­ti­on of the machi­ne.
Our scope of duties included product/design deve­lo­p­ment, device ergo­no­mics, housing con­s­truc­tion and indus­tria­liza­ti­on of the pro­to­ty­pe as well as pre­sen­ta­ti­on creation.

The specification

In August 2018 we star­ted the pro­ject with a com­pre­hen­si­ve mar­ket and envi­ron­ment ana­ly­sis. As the cor­ner­stone of pro­duct deve­lo­p­ment, we were able to work out the requi­re­ments for the device with the pro­ject part­ners and sum­ma­ri­ze the results in a joint spe­ci­fi­ca­ti­on sheet. This included ergo­no­mic requi­re­ments, for­mal cri­te­ria, envi­ron­men­tal con­di­ti­ons as well as requi­re­ments for the tech­no­lo­gy and the pro­cess as well as for manu­fac­tu­ra­bi­li­ty and pro­duc­tion costs. 
So soll­te der Auto­mat ergo­no­misch und intui­tiv zu bedie­nen sein. Dies bezog sich sowohl auf Aspek­te der manu­el­len Bedie­nung als auch auf die Bedie­nung über ein digi­ta­les Inter­face. Die­ses Inter­face soll­te den Benutzer/ die Benut­ze­rin mög­lichst selbst­er­klä­rend durch die Bedie­nung und die ein­zel­nen Menü­schrit­te füh­ren. Zwar soll­te eine seman­ti­sche Anleh­nung an ver­wand­te Gerä­te aus dem Labor­um­feld statt­fin­den, jedoch soll­ten die tech­ni­schen Pro­dukt­in­no­va­tio­nen nach außen hin sicht­bar wer­den und sich als Neu­heit von ande­ren benach­bar­ten Gerä­ten im Labor­um­feld abhe­ben. Da Labor­ge­rä­te in der Regel über lan­ge Pro­dukt­zy­klen bestehen blei­ben, wur­de ein mög­lichst zeit­lo­ses Design und eine kor­rek­te und all­ge­mein gül­ti­ge Ver­wen­dung von Pro­dukt­se­man­tik ange­strebt. Die Gestal­tung muss­te unter Berück­sich­ti­gung einer zum Markt­ein­tritt klei­ne­ren Serie erfolgen. 
laborgeräte_design_ industrial

project flow

In the first pha­se of work, it was neces­sa­ry to pre­cis­e­ly defi­ne the gene­ral con­di­ti­ons of the pro­ject. The outer dimen­si­ons of the device housing, which were adapt­ed to the cir­cum­s­tances of the envi­ron­ment, were rela­tively clear. Com­pact­ness has been defi­ned as one of the pri­ma­ry goals of pro­duct deve­lo­p­ment, as space on labo­ra­to­ry work­ben­ches is limi­t­ed and mul­ti­ple devices often have to be pla­ced side by side. This resul­ted in maxi­mum dimen­si­ons in depth and height. A width has not been set for the time being. Basi­cal­ly, howe­ver, it was important to keep the foot­print of the device as small as possible.

At the same time, the team from the uni­ver­si­ty and the com­pa­ny CryLaS deve­lo­ped a first pos­si­ble tech­no­lo­gy packa­ge, con­sis­ting of optics and elec­tro­nic com­pon­ents, which defi­ned the mini­mum dimen­si­ons of the housing. For the con­s­truc­tion of the machi­ne, the fol­lo­wing appli­ed: the more com­pact the housing, the more cost-effective and easy to inte­gra­te the device is in pro­duc­tion and in use.


It was deter­mi­ned that the nano­col­lo­ids should be pro­du­ced with the hig­hest pos­si­ble puri­ty. The start­ing mate­ri­als should be three pre­cious metals (gold, sil­ver and pla­ti­num) and a col­lo­id medi­um (flu­id).

So we nee­ded both an exch­an­geable mate­ri­al car­tridge and three liquid con­tai­ners, becau­se in addi­ti­on to the flu­id we also nee­ded a con­tai­ner for the liquid to flush the sys­tem and a sta­bi­li­zer solu­ti­on.
In addi­ti­on, a release quan­ti­ty was defi­ned as a mea­su­re for the inten­ded coll­ec­tion vessel.


While the Uni­ver­si­ty of Duisburg-Essen and CryLas were con­duc­ting various series of tests to deter­mi­ne the pre­re­qui­si­tes for opti­mal pro­duc­ti­vi­ty of the abla­ti­on (pro­cess of col­lo­id crea­ti­on), we crea­ted the first ergo­no­mic and topo­lo­gy con­cepts based on the key data known at the time.

For this pur­po­se, the ques­ti­ons had to be ans­we­red before­hand as to which func­tions the machi­ne has and which requi­re­ments must be met in the area of con­flict bet­ween users, envi­ron­ment and technology.

The fol­lo­wing sub­ject are­as could be defi­ned by the sche­ma­tic dra­wing of the nano-automatic machine:

  • flu­id delivery
  • Tar­get
  • UI
  • coll­ec­tion vessel
  • inner workings
  • housing con­s­truc­tion.

In this way, it was pos­si­ble to deter­mi­ne which fac­tors were set and for which sub-areas new con­cepts were required.


To sup­port this, we crea­ted a pro­cess matrix. With the help of the plan, we were not only able to simu­la­te a detail­ed cour­se of action for the user, but also to dis­c­lo­se weak points and poten­ti­al risks in the process.

In order to ensu­re good device ergo­no­mics, a par­ti­cu­lar focus was on inves­ti­ga­ting the inter­ac­tion points bet­ween humans and the device. As a result, we were able to defi­ne are­as of action. The­se include ope­ra­ti­on via the digi­tal inter­face, fil­ling and repla­cing the flu­id tanks, inser­ting or repla­cing the tar­get housing and remo­ving the finis­hed pre­cious metal colloid.

With the help of ana­lo­gies, for exam­p­le the ejec­tion mecha­nism of a his­to­ric Nin­ten­do 64 con­so­le, which we trans­fer­red to the device con­text, simp­le and robust ope­ra­ting con­cepts could be developed. 

In order to check ergo­no­mics and func­tion, we made mock­ups of three favo­ri­te con­s­truc­tion vari­ants. At this ear­ly stage of the pro­cess and in the deve­lo­p­ment of the­se ergo­no­mic con­cepts, the "design" in the sen­se of an aes­the­tic, exter­nal design did not play a role. It is important that the func­tion­a­li­ty of a device is gua­ran­teed first, so that the aes­the­tics can then be matched to the function. 
We had the resul­ting models tes­ted and com­men­ted on by poten­ti­al users in the pro­duct envi­ron­ment over a lon­ger peri­od of time. This allo­wed us to cor­rect errors through ear­ly test­ing pha­ses and ensu­re that our con­cepts work­ed in the field test. 

Our work­shop infra­struc­tu­re also pro­ved to be neces­sa­ry and hel­pful in this pro­ject. We deve­lo­ped a remo­va­ble mate­ri­al cas­set­te, which we pro­du­ced in our in-house 3D labo­ra­to­ry using 3D prin­ting. We made the­se available to the uni­ver­si­ty so that the func­tion and tight­ness of the cas­set­te could be tes­ted in the test series and tes­ted in con­nec­tion with the ejec­tion mecha­nism, which we also developed. 

"How can we imagine the case?"

In the next step we star­ted with the design and tech­ni­cal imple­men­ta­ti­on of the machi­ne housing. An important step, becau­se up until now we only had a con­cept and, thanks to the pro­to­ty­pes, an idea of how the struc­tu­re would be. The pro­ject part­ners initi­al­ly found it dif­fi­cult to ima­gi­ne how the black card­board boxes would beco­me a real device. What we nee­ded was a sui­ta­ble visua­liza­ti­on. In addi­ti­on to the many skills, the designer's abili­ty to turn ide­as into real pro­ducts is the decisi­ve factor.

We deve­lo­ped a design for the machi­ne that was aes­the­tic, based on ergo­no­mic know­ledge, met all safe­ty requi­re­ments and was easy to imple­ment accor­ding to the pro­duc­tion method.

The small series of 20-500 pie­ces requi­red pro­duc­tion methods wit­hout expen­si­ve mold or jig con­s­truc­tion. Here it beca­me clear once again that no com­pro­mi­ses in design are neces­sa­ry, even with major rest­ric­tions in terms of manu­fac­tu­ring opti­ons. Sin­ce we have alre­a­dy work­ed suc­cessful­ly on pro­jects with simi­lar issues in the past, we were able to draw on our expe­ri­ence in the field of design with bent sheet metal and fold­ed parts.

Taking the requi­re­ments cata­log into account, two design vari­ants were crea­ted. One vari­ant impres­sed with its mini­mal foot­print, while the other vari­ant was based on fron­tal ope­ra­ti­on as a cen­tral fea­ture of the design.
The­se were pre­sen­ted and dis­cus­sed at a pro­ject mee­ting. The main dif­fe­rence is the loca­ti­on of the two flu­id con­tai­ners. The "easy front access" vari­ant con­vin­ced all pro­ject part­ners unani­mously in terms of hand­ling and design potential.

Iteration loops are part of our everyday life

Sin­ce the laser sys­tem used up to that point did not achie­ve the desi­red per­for­mance and the device would not have been suf­fi­ci­ent­ly com­pe­ti­ti­ve on the mar­ket in this con­fi­gu­ra­ti­on, a more powerful laser beam source had to be used and tes­ted again. The alter­na­ti­ve laser sys­tem final­ly pro­vi­ded the desi­red pro­duc­ti­vi­ty. As a result, the device topo­lo­gy had to be revi­sed and the design and CAD had to be adapt­ed to the new, lar­ger instal­la­ti­on space of the technology.

Cor­rec­tion loops are part of the deve­lo­p­ment pro­cess and are valuable in ear­ly pha­ses, sin­ce the­re is still the oppor­tu­ni­ty to imple­ment them wit­hout gre­at expen­se. The­se types of adjus­t­ments and opti­miza­ti­ons are also part of our day-to-day busi­ness in other projects.

In par­ti­cu­lar, the aspect of pos­si­ble sca­ling, which was alre­a­dy dis­cus­sed when eva­lua­ting the two design vari­ants, now tur­ned out to be a gre­at advan­ta­ge.
In this way, the adapt­a­ti­on could be imple­men­ted wit­hout chan­ging the cha­rac­ter and the ori­gi­nal design ide­as of the machine.



Our final work packa­ge con­sis­ted of put­ting the deve­lo­ped design in our pro­to­ty­pe work­shop imple­ment. During plan­ning and con­s­truc­tion, care was taken to ensu­re that the housing can be built back to 100% in the pro­to­ty­pe stage so that any chan­ges can be made after­wards. For exam­p­le, ins­tead of per­ma­nent wel­ded joints, the housing parts were initi­al­ly screwed tog­e­ther. Later, in series pro­duc­tion, various screw con­nec­tions can be repla­ced by welds, which fur­ther redu­ces assem­bly work and pro­duc­tion cos­ts. After recei­ving the extern­al­ly manu­fac­tu­red housing parts, which we had pre­vious­ly desi­gned in CAD, we were able to start assembling the func­tion­al pro­to­ty­pe. Made of bent sheet metal and fold­ed parts, mil­led parts , screws and 3D prin­ted parts , through pain­ting, assem­bly and pas­ting with pro­duct gra­phics, the first two nano ful­ly auto­ma­tic machi­nes were crea­ted step by step.

The con­clu­si­on of the pro­ject was the inser­ti­on of the moun­ting pla­te with the laser sys­tem and the con­nec­tion of the housing and the tech­ni­cal unit.
The result is two func­tion­al pro­to­ty­pes that, as plan­ned, can be used to pre­sent the pro­ject idea at trade fairs or simi­lar events and for initi­al field tests.

The result

Das durch das ZIM geför­der­te Koope­ra­ti­ons­pro­jekt ist ein gutes Bei­spiel, wie inter­dis­zi­pli­nä­re Koope­ra­ti­on funk­tio­nie­ren kann und wel­chen zen­tra­len Anteil Industrial-Designer leis­ten kön­nen. Das Vor­ha­ben, ein kom­pak­tes und wirt­schaft­lich attrak­ti­ves Desk­top­ge­rät zur Erstel­lung von Metall­na­no­par­ti­kel­kol­lo­iden zu ent­wi­ckeln, wur­de erfüllt. 
Ent­schei­dend war die enge Zusam­men­ar­beit, sodass ein reger Infor­ma­ti­ons­fluss auf­recht erhal­ten wer­den konn­te und man sich gegen­sei­tig mit den jewei­li­gen Kom­pe­ten­zen unterstützte. 

Wir erach­ten den Trans­fer von Wis­sen und inno­va­ti­ven For­schungs­er­geb­nis­sen aus den aka­de­mi­schen Berei­chen in die Indus­trie als beson­ders wich­tig. Des­halb sind wir stolz, Teil der Koope­ra­ti­on sein zu kön­nen und als Inno­va­ti­ons­trei­ber und umset­zungs­ori­en­tier­te Part­ner, Ideen wirt­schaft­lich in den Markt zu brin­gen. Wir hal­fen nicht nur bei der Form­fin­dung des Auto­ma­ten­ge­häu­ses und des­sen Ergo­no­mie, son­dern leis­te­ten auch bei der Pro­zess­op­ti­mie­rung zur Erstel­lung des Kol­lo­ides unse­ren Bei­trag. Das erklär­te Ziel der Aus­grün­dung ist für das Jahr 2022 geplant. Hier­für wün­schen wir viel Erfolg und freu­en uns, dass wir das jun­ge Start-Up auch wei­ter­hin als Design- und Ent­wick­lungs­part­ner beglei­ten werden. 

Starten Sie Ihr eigenes Projekt mit uns!

Teilen Sie den Beitrag mit Kollegen!